165
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Scintillation index and bit error rate of hollow Gaussian beams in atmospheric turbulence

, , &
Pages 939-944 | Received 12 Jul 2010, Accepted 13 Apr 2011, Published online: 18 May 2011
 

Abstract

Based on the Huygens–Fresnel principle and Rytov method, the on-axis scintillation index is derived for hollow Gaussian beams (HGBs) in weak turbulence. The relationship between bit error rate (BER) and scintillation index is found by only considering the effect of atmosphere turbulence based on the probability distribution of intensity fluctuation, and the expression of the BER is obtained. Furthermore, the scintillation and the BER properties of HGBs in turbulence are discussed in detail. The results show that the scintillation index and BER of HGBs depend on the propagation length, the structure constant of the refractive index fluctuations of turbulence, the wavelength, the beam order and the waist width of the fundamental Gaussian beam. The scintillation index, increasing with the propagation length in turbulence, for the HGB with higher beam order increases more slowly. The BER of the HGBs increases rapidly against the propagation length in turbulence. For propagating the same distance, the BER of the fundamental Gaussian beam is the greatest, and that of the HGB with higher order is smaller.

Acknowledgements

This research was supported by National Natural Science Foundation of China and Civil Aviation Administration of China under Grant No. 61079023. The authors are grateful to the reviewers for their useful comments and suggestion.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.