104
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

All-optical quaternary logic gates

Pages 993-1005 | Received 14 Mar 2013, Accepted 10 Jul 2013, Published online: 05 Sep 2013
 

Abstract

Conventional binary logic based operations restrict the speed of operations as well as information handling capacity. A way to overcome these limitations is the implementation of multivalued logic operations in the optical domain. Multivalued logic operations not only enhance the data handling capacities but also increase the speed of processing. integrating enormous potential bandwidth of optical fiber as information carrying medium and faster optoelectronic/optical switches with no hardware complexity. A new method is proposed for the implementation of all-optical quaternary inversion, MAX, MIN, and equality operations using frequency-encoded data. Cross phase modulation-based frequency conversion, polarization switch (PSW) characteristics of a semiconductor optical amplifier (SOA), frequency routing by a wave division multiplexer (MUX), and a demultiplexer (DMUX) have been exploited to implement the desired quaternary logic operations. Simulation results support the feasibility of the proposed scheme.

Acknowledgement

The work was financially supported by the University Grants Commission (UGC), India, under the Minor Research Project No. F.PSW-18/12-13(ERO).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.