116
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Asymmetric bistable reflection and polarization switching in a magnetic nonlinear multilayer structure

, , &
Pages 276-285 | Received 02 Aug 2013, Accepted 06 Jan 2014, Published online: 05 Feb 2014
 

Abstract

Optical properties of one-dimensional photonic structures consisting of Kerr-type nonlinear and magnetic layers under the action of an external static magnetic field in the Faraday geometry are investigated. The structure is a periodic arrangement of alternating nonlinear and magnetic layers (a one-dimensional photonic crystal) with one of the layers doubled to create a defect where periodicity is violated. Strong enhancement of nonreciprocity is observed at the frequencies of the defect modes, where linearly polarized light incident from one side of the structure undergoes polarization rotation upon reflection, while light reflected from the other side has its polarization unchanged. Using the nonlinear transfer matrix calculations in the frequency domain, it is demonstrated that defect resonances in the nonlinear reflection spectra undergo bending, resulting in polarization bistability of reflected light. This bistability is shown to result in abrupt switching between linear polarization of the output reflected light when the input intensity is varied. This switching is confirmed in finite-difference time-domain simulations, and its hysteresis character is established.

Notes

This work was supported by the Ukrainian State Foundation for Basic Research, project F54.1/004 and the Belarusian Foundation for Basic Research, project F13K-009. One of us (S.V.Z.) wishes to acknowledge partial financial support from the People Programme (Marie Curie Actions) of the European Union’s 7th Framework Programme FP7-PEOPLE-2011-IIF under REA grant agreement No. 302009 (Project HyPHONE)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.