327
Views
26
CrossRef citations to date
0
Altmetric
Research Articles

Generation of soliton and bound soliton pulses in mode-locked erbium-doped fiber laser using graphene film as saturable absorber

, , , , , , , , & show all
Pages 777-782 | Received 24 Jun 2015, Accepted 21 Sep 2015, Published online: 22 Oct 2015
 

Abstract

We report an observation of soliton and bound-state soliton in passive mode-locked fibre laser employing graphene film as a passive saturable absorber (SA). The SA was fabricated from the graphene flakes, which were obtained from electrochemical exfoliation process. The graphene flakes was mixed with polyethylene oxide solution to form a polymer composite, which was then dried at room temperature to produce a film. The film was then integrated in a laser cavity by attaching it to the end of a fibre ferrule with the aid of index matching gel. The fibre laser generated soliton pulses with a 20.7 MHz repetition rate, 0.88 ps pulse width, 0.0158 mW average output power, 0.175 pJ pulse energy and 18.72 W peak power at the wavelength of 1564 nm. A bound soliton with pulse duration of ~1.04 ps was also obtained at the pump power of 110.85 mW by carefully adjusting the polarization of the oscillating laser. The formation of bound soliton is due to the direct pulse to pulse interaction. The results show that the proposed graphene-based SA offers a simple and cost efficient approach of generating soliton and bound soliton in mode-locked EDFL set-up.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by University of Malaya [grant number PG139-2012B], [grant number RP008C-13AET], [grant number RP008D-13AET], [grant number PG113-2014A].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.