213
Views
0
CrossRef citations to date
0
Altmetric
Articles

A parity-time symmetry single-mode laser based on graphene

, , , &
Pages 2133-2140 | Received 20 Mar 2017, Accepted 09 Jun 2017, Published online: 23 Jun 2017
 

Abstract

The development of advanced optical systems, especially coherent optical systems demands high-performance single-mode lasers. Here, we proposed a parity-time symmetry single-mode laser based on graphene with superior performance over the widely utilized technologies of the index-coupled DFB laser working at telecommunication wavelength. The unique properties of graphene have been used to tune the III-V/Silicon hybrid laser to the PT symmetry broken phase where the lasing mode has a minimum overlap with graphene nanostructures while all other modes have been suppressed by the loss in graphene. Our results suggest a high-performance silicon-based laser source for photonic integrated circuits. Such a compact single-mode laser source can be widely used in some applications, such as on-chip optical interconnects, optical spectrometry, biochemical sensing and imaging.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.