266
Views
3
CrossRef citations to date
0
Altmetric
Articles

A fast 3D shape measurement method based on sinusoidal and triangular fringe projection

, , , , &
Pages 136-144 | Received 14 Jan 2017, Accepted 25 Aug 2017, Published online: 03 Oct 2017
 

Abstract

Existing methods to measure 3D shape of complex object involve processing more than six captured images to obtain the absolute phase, which limit the measurement speed. This paper presents two sinusoidal fringes and two triangular wave fringes which is used to measure 3D shape of complex object. The two-step phase-shifting sinusoidal fringes and two-step phase-shifting triangular wave fringes are calculated to obtain the wrapped phase, and then the two-step phase-shifting triangular wave fringes are used to determine the fringe order. Due to decrease the number of projection fringes, the speed of measurement increases. The triangular wave fringe carries more information of the object than linear increasing/decreasing ramp fringe in the actual measurement, more noise in the base phase to be overcome, thus improving the measurement accuracy. The benefits can be widely applied in high-speed, real-time 3D measurement of complex shape. Experimental results have demonstrated that the proposed method is simple, but effective.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.