724
Views
61
CrossRef citations to date
0
Altmetric
Articles

Silicon on silicon dioxide slot waveguide evanescent field gas absorption sensor

ORCID Icon, &
Pages 174-178 | Received 12 May 2017, Accepted 12 Sep 2017, Published online: 03 Oct 2017
 

Abstract

Several trace gases such as H2O, CO, CO2, NO, N2O, NO2 and CH4 strongly absorb in the mid-IR spectral region due to their fundamental rotational and vibrational transitions. In this work, we propose an evanescent field absorption gas sensor based on silicon/silicon dioxide slot waveguide at 3.39 μm for sensing of methane gas. These waveguides can provide the highest evanescent field ratio (EFR) > 47% with adequate dimensions. Higher EFR values often come at an expense of higher propagation losses. These waveguides have relatively higher losses as compared to conventional waveguides, such as rib and slab waveguides, as these fundamental losses are static and the proposed sensing mechanism is established on the incremental loss due to the absorption of the gas. Therefore, incident power can always be incremented to compensate the waveguide losses.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.