1,741
Views
358
CrossRef citations to date
0
Altmetric
Original Articles

A quantum Rosetta stone for interferometry

, &
Pages 2325-2338 | Published online: 03 Dec 2010
 

Abstract

Heisenberg-limited measurement protocols can be used to gain an increase in measurement precision over classical protocols. Such measurements can be implemented using, for example, optical Mach—Zehnder interferometers and Ramsey spectroscopes. We address the formal equivalence between the Mach—Zehnder interferometer, the Ramsey spectroscope and a generic quantum logic circuit. Based on this equivalence we introduce the 'quantum Rosetta stone', and we describe a projective-measurement scheme for generating the desired correlations between the interferometric input states in order to achieve Heisenberg-limited sensitivity. The Rosetta stone then tells us that the same method should work in atom spectroscopy.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.