27
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Analysis and simulations of two-wave mixing in photopolymer holographic recording media

, , &
Pages 2241-2255 | Received 24 Feb 2004, Published online: 10 Feb 2011
 

Abstract

The process of two-wave mixing in photopolymer recording materials was investigated theoretically. The diffraction grating already forms during exposition and it may influence the original interference field distribution through diffraction of waves on the refractive index modulation. In order to show this, Kogelnik's coupled wave theory was extended to demonstrate the possibility of energy transfer from one recording wave to the other. The energy transfer and the intensity distribution during the recording process were systematically analysed depending on the boundary conditions. As a next step, the first harmonic model of the transmission grating recording, based on a simple material model, was implemented and solved. The ratio of the input intensities was found to be a crucial parameter and thus extensive simulations for various ratios of intensities were carried out. Modelling implies that the interference field and the refractive index grating just coincide for equal intensities. For intensities differing from unity they do not overlap themselves during the recording process. It has also turned out that the diffraction efficiency of the recorded grating drops against the case where the effects of two-wave mixing are not considered. The results of our analysis and simulation help give a better understanding of the physics of the recording process and proper adjustment of recording parameters in such applications as optical holography and holographic memories.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.