39
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Analytical expressions for optimum alignment modes of highly segmented mirrors

Pages 603-632 | Received 01 Apr 2004, Published online: 20 Feb 2007
 

Abstract

The major sources causing deterioration of optical quality in extremely large optical telescopes are misadjustments of the mirrors, deformations of monolithic mirrors and misalignments of segments in segmented mirrors. For active optics corrections, all three errors, which can partially compensate each other, are measured simultaneously. It is therefore of interest to understand the similarities and differences between the three corresponding types of modes which describe these errors. The first two types are best represented by Zernike polynomials and elastic modes respectively, both of them being continuous and smooth functions. The segment misalignment modes, which are derived by singular value decomposition, are by their nature not smooth and in general discontinuous. However, for mirrors with a large number of segments, the lowest modes become effectively both smooth and continuous. This paper derives analytical expressions for these modes, using differential operators and their adjoints, for the limit case of infinitesimally small segments. For segmented mirrors with approximately 1000 segments, it is shown that these modes agree well with the corresponding lowest singular value decomposition modes. Furthermore, the analytical expressions reveal the nature of the segment misalignment modes and allow for a detailed comparison with the elastic modes of monolithic mirrors. Some mathematical features emerge as identical in the two cases.

Acknowledgments

The author would like to thank Gary Chanan for many useful discussions and Ray Wilson and Natalia Yaitskova for critical comments on the manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.