117
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Parametric oscillation with squeezed vacuum reservoirs

Pages 813-832 | Received 06 May 2004, Accepted 21 Jul 2004, Published online: 15 Aug 2006
 

Abstract

Employing the quantum Hamiltonian describing the interaction of a two-mode light (signal–idler modes) generated by a non-degenerate parametric oscillator (NDPO) with two uncorrelated squeezed vacuum reservoirs (USVR), we derive the master and the Fokker–Planck equations. The corresponding Fokker–Planck equation for the Q-function is then solved employing a propagator method developed by K. Fesseha [J. Math. Phys. 33 2179 (1992)]. Making use of this Q-function, we calculate the quadrature fluctuations of the optical system. From these results we infer that the signal–idler modes are in squeezed states. When the NDPO operates below threshold we show that, for a large squeezing parameter, a squeezing amounting to a noise suppression approaching 100% below the vacuum level in one of the quadratures can be achieved.

Acknowledgments

I would like to thank K. Fesseha, M. Lewenstein and A. Sanpera for fruitful discussions. I acknowledge financial support by the Deutscher Akademischer Austausch Dienst (DAAD).

Notes

Additional information

Notes on contributors

A. Mebrahtu Footnote*

Email: [email protected]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.