164
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Evanescent waves in the magnetic field of an electric dipole

Pages 1215-1241 | Received 20 Dec 2003, Accepted 01 Sep 2004, Published online: 02 Sep 2006
 

Abstract

The magnetic field of radiation emitted by an electric dipole contains travelling and evanescent waves when represented as an angular spectrum. The evanescent waves decay exponentially away from the xy-plane, and will therefore not contribute to the detectable radiation in the far field, in general. It is well known, however, that in a small region around the z-axis the evanescent waves of the electric field do end up in the far zone. We have studied the corresponding magnetic evanescent waves, and we have found that the evanescent waves of the magnetic field do not contribute to the far zone in the neighbourhood of the z-axis. When considering the neighbourhood of the xy-plane, it appears that both the electric and magnetic evanescent waves end up in the far field, and the travelling and evanescent waves contribute equally to the radiation in the far zone. Close to the dipole the radiation field diverges, and we have shown that this is entirely due to the evanescent waves.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.