88
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Derivation of the antiphase-boundary energy of L1 2 long-range-ordered precipitates from measurements of the minimum size of stable dislocation loops

Pages 839-847 | Published online: 14 Nov 2010
 

In an alloy that is strengthened by long-range-ordered particles, a matrix dislocation generates an antiphase boundary (APB) when it cuts through such a particle. The specific energy n APB of this APB has been measured for two fcc alloys with spherical coherent L12 ordered particles: an Al-7.5at.%Li-alloy and the commercial Ni-base superalloy Nimonic PE16. Peak-aged specimens have been deformed and Orowan loops searched for using transmission electron microscopy. n APB has been derived from the radii of the smallest dislocation loops which have been left behind around particles. Such an approach had been used previously, for example, by Raynor and Silcock and by Nembach et al . Here an improved evaluation method has been applied; it is based on the results of computer simulations of the equilibrium configurations of dislocation loops.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.