246
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Reaction of a Ni-coated Al nanoparticle to form B2-NiAl: A molecular dynamics study

, , , &
Pages 815-830 | Received 09 Jul 2009, Accepted 09 Sep 2009, Published online: 06 Nov 2009
 

Abstract

The kinetic reaction in a Ni-coated Al nanoparticle with equi-atomic fractions and diameter of approximately 4.5 nm is studied by means of molecular dynamics simulation, using a potential of the embedded atom type to model the interatomic interactions. First, the large driving force for the alloying of Ni and Al initiates solid state amorphization of the nanoparticle with the formation of Ni50Al50 amorphous alloy. Amorphization makes intermixing of the components much easier compared to the crystalline state. The average rate of penetration of Ni atoms can be estimated to be about two times higher than Al atoms, whilst the total rate of inter-penetration can be estimated to be of the order of 10−2 m/s. The heat of the intermixing with the formation of Ni50Al50 amorphous alloy can be estimated at approximately −0.34 eV/at. Next, the crystallization of the Ni50Al50 amorphous alloy into B2-NiAl ordered crystal structure is observed. The heat of the crystallization can be estimated as approximately −0.08 eV/at. Then, the B2-NiAl ordered nanoparticle melts at a temperature of approximately 1500 K. It is shown that, for the alloying reaction in the initial Ni-coated Al nanoparticle, the ignition temperature can be as low as approximately 200 K, while the adiabatic temperature for the reaction is below the melting temperature of the nanoparticle with the B2-NiAl ordered structure.

Acknowledgements

This research was supported by the Australian Research Council through its Discovery Project Grants Scheme. E.V. Levchenko wishes to thank the University of Newcastle for the award of a University Fellowship.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.