269
Views
0
CrossRef citations to date
0
Altmetric
Articles

Microstructure and mechanical properties of the new TiZrHfReAl HCP high entropy alloy

ORCID Icon, &
Pages 287-298 | Received 21 Feb 2022, Accepted 29 Aug 2022, Published online: 20 Sep 2022
 

ABSTRACT

In the present study, the intelligent addition of Re and Al to TiZrHf equiatomic ternary alloy resulted in a new single-phase Ti30Zr30Hf30Re5Al5 HCP high entropy alloy. The XRD analyses show that the TiZrHfRex alloys have a single-phase HCP structure until x = 5 at.%. Subsequently, the TiZrHfRe5 retains its single-phase HCP microstructure with the addition of Al upto 5 at.%, leading to a new quinary TiZrHfRe5Al5 HCP HEA. Microstructural investigations using SEM revealed the formation of compositionally homogeneous single-phase HCP solid solution for TiZrHf, TiZrHfRe5 and TiZrHfRe5Al5 alloys. Vicker's microindentation measurements revealed that adding Re, followed by Al, increases the hardness of the TiZrHf ternary alloy from 7.85±0.37–8.35±0.42 GPa. In a nutshell, a novel quinary HCP alloy was developed based on transition metals, allowing HCP HEA compositional space to expand beyond rare-earth (RE) based HEAs.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.