69
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

The embrittlement mechanism and improvement of impact strength for lead-free solder joints in BGA packaging using electrolytic Ni/Au plating

, , , , , & show all
Pages 490-500 | Received 10 Oct 2007, Accepted 07 Dec 2007, Published online: 10 Jun 2009
 

Abstract

Impact strength evaluation and fracture mechanism analysis in board level of Sn–3mass%Ag–0.5mass%Cu solder joints of ball grid arrays (BGA) using electrolytic Ni/Au plating were performed. The cause of impact strength degradation of BGA solder ball joints is the existence of low density defects, which contain organic materials, in the (Cu,Ni)6Sn5 intermetallic compound grain boundary formed in the solder joints. These organic materials are taken in by the nickel plating film at the time of nickel plating. To improve the impact strength of the Sn–3mass%Ag–0.5mass%Cu solder joint of the BGA, it is necessary to lower the concentration of these organic materials. The contamination prevention and nickel plating bath sanitization, solder mask material selection (to minimize nickel plating bath contamination) and higher current density of nickel plating are effective to keep a lower concentration of organic materials in nickel plating film.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.