243
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Spot welding between aluminium alloy and low-carbon steel by friction stirring

, , &
Pages 559-564 | Received 17 Oct 2007, Accepted 09 Jan 2008, Published online: 15 Jul 2009
 

Abstract

The application of aluminium alloy, which is a typical lightweight material, has been expected in the construction of transportation vehicles to achieve energy saving by reduction of weight. However, structures made of whole aluminium alloy have problems with low strength and high cost. Thus, hybrid structures made of Al alloy and steel are useful because of light weight and higher strength. To construct the hybrid structure, it is necessary to weld aluminium alloy and steel. However, conventional welding methods, like brazing and mechanical fastening, have problems such as low mechanical strength and low productivity. Also, it is difficult to weld Al alloy and steel by conventional fusion welding.

In this study, spot welding between aluminium alloy and low carbon steel by friction stirring was carried out. Especially, optimization in welding conditions was carried out. Moreover, the effect of welding conditions on the joint strength and weld interface was studied. As a result, relatively higher tensile shear strength of the weld, which was achieved at optimum welding conditions, was obtained. Temperature near weld interface measured by K-type thermocouple during welding was found to be lower than the melting point of A5052. From the observation results on microstructure of the weld interface, it was found that a Fe/Al intermetallic compound layer was formed.

Acknowledgements

We would like to thank OSC K.K. for the gift of the rotating tool used in this study and Fuji Heavy Industries for their contribution of SPC270C.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.