81
Views
0
CrossRef citations to date
0
Altmetric
Articles

Microjoining of Ti–Ni alloy and stainless steel using resistance brazing method aided by numerical simulation

&
Pages 417-424 | Received 09 Oct 2012, Accepted 24 May 2013, Published online: 04 Nov 2014
 

Abstract

A novel resistance brazing method aided by numerical simulation, in which the brazing is completed through several preliminary heatings and a subsequent final heating aided by the numerical simulation is presented. The preliminary heating is performed with a relatively low electric energy input so that the uniformity of the surface contact condition between two parts can be improved due to local melting and subsequent solidification and so that the electric current data can be acquired for preparing analytical conditions necessary to the numerical simulation. The final heating is performed with an energizing condition determined by the numerical simulation in advance. To prove the efficacy of the resistance brazing method aided by the numerical simulation, Ti–Ni alloy and type 304 stainless steel wires with diameters of 96 μm both were butt-joint brazed using Au–Cu brazing filler metal supplied with the individual metal plating. The brazed joints had tensile strengths ranging from 74 to 448 MPa in accordance with the energizing conditions.

Notes

1. Present address: Sumitomo Wiring Systems Ltd.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.