185
Views
3
CrossRef citations to date
0
Altmetric
Articles

Numerical analysis on solidification cracking susceptibility of type 316 stainless steel considering solidification mode and morphology computer simulation of hot cracking by solidification/segregation models

, &
 

ABSTRACT

The two-phase solidification model was constructed considering the solidification mode and morphology. The effects of the solidification mode and morphology as well as δ-ferrite on the solidification cracking susceptibility of austenitic stainless steels (SUS316L) were clarified by a numerical analysis. The solid–liquid coexistence temperature range (SLCTR), correlating the solidification brittle temperature range (solidification cracking susceptibility), was calculated based on the computer simulation of supercooling and solidification segregation behaviours. In the peritectic–eutectic solidification model, the solidification mode greatly influenced the solidification segregation as well as the SLCTR, although the solidification segregation and the SLCTR would be discontinuously changed at the solidification mode transition. The SLCTR calculated by peritectic–eutectic solidification model was larger than that by divorced eutectic solidification model at the ferritic–austenitic mode solidification, while an opposite tendency was observed at the austenitic–ferritic mode solidification. The amounts of δ-ferrite calculated by each solidification model were comparable in any solidification modes. The SLCTR was approximately decreased with an increase in the amount of δ-ferrite in any solidification models. It followed that solidification cracking susceptibility would be dominantly influenced by δ-ferrite and additionally by the solidification mode and morphology.

Acknowledgements

Part of this study was performed through the Strategic Innovation Program (SIP) ‘The development of simulation technologies for novel structural materials and weld performance assurance’ of the Council for Science, Technology and Innovation (administered by JST).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.