45
Views
0
CrossRef citations to date
0
Altmetric
Articles

Evaluating the deterioration of electrodes when increasing the number of pulses in the welding time using galvanised IF and HSLA steels and assigning mechanical properties in the spot welds

, , &
 

ABSTRACT

Resistance spot welding is the most important method in the industry of self-supporting or monocoque body joinery because of its automation, its speed, the flexibility of welding parts with a complicated shape, and it is economical because it does not require a filler metal, and it is also possible to apply pre-heating and post-heating pulses to improve the weldability of the spot weld, which is defined as the ability of the structure to adequately protect passengers against injuries in the event of a collision, and this mainly depends on the integrity and mechanical performance of the weld button. In order to extend the lifetime of vehicles, galvanized steels are produced. However, zinc coatings have increased the difficulty of weldability, with higher currents being required in the process, since there is less resistance at the weld interface due to improved electrical conductivity. This work investigates the effect of galvanizing on the reduction of the lifetime of the electrodes, for this reason, it follows that there is a loss in the mechanical properties in the weld buttons as the number of spot welds increases. The main aim of this study is to correlate the electrode wear with the mechanical properties of the weld buttons. The experiment procedure consists of making 1,000 spot welds; and every twenty-fifth spot weld after the first was examined by means of stereoscopy, hardness tests, unbuttoning tests and shear stress tests. In terms of electrode wear, the face was evaluated using impressions on carbon paper, optical microscopy and X-ray spectroscopy.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.