938
Views
10
CrossRef citations to date
0
Altmetric
Articles

The impact of students’ exploration strategies on discovery learning using computer-based simulations

, &
Pages 310-329 | Received 22 May 2014, Accepted 30 Sep 2014, Published online: 17 Nov 2014
 

Abstract

Discovery-based learning designs incorporating active exploration are common within instructional software. However, researchers have highlighted empirical evidence showing that “pure” discovery learning is of limited value and strategies which reduce complexity and provide guidance to learners are important if potential learning benefits are to be achieved. One approach to reducing complexity in discovery learning is limiting the range of possible actions for the learner to ensure that they do not undertake exploratory activities leading to confusion. This article reports on a study in which the learning outcomes from two learning conditions using computer-based simulations were compared. One condition allowed exploration through manipulation of simulation parameters, while the other allowed observation of simulation output from preset parameters, the latter condition designed to limit the complexity of the task. Learning outcomes for the 158 university student participants were assessed via pre-tests and post-tests of conceptual understanding. Students’ exploration activities were recorded and their strategies subsequently coded as either systematic or unsystematic. The results showed that when compared with observation, systematic exploration resulted in learning benefits, while unsystematic exploration did not. These results have implications for the design of discovery learning tasks and instructional guidance within computer-based simulations.

Acknowledgments

Support for this project has been provided through a Charles Sturt University Small Grant and a University of Wollongong Centre for Research in Interactive Learning Environments Seed Grant. The authors would also like to acknowledge the contributions of Dr Terry Judd and Dr Michael Lew of the University of Melbourne to the development of the computer-based simulations.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.