369
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Robot arm navigation using deep deterministic policy gradient algorithms

ORCID Icon
Pages 617-627 | Received 05 Jan 2021, Accepted 19 Jul 2021, Published online: 08 Feb 2022
 

ABSTRACT

In this paper, the Deep Deterministic Policy Gradient (DDPG) reinforcement learning algorithm is employed to enable a double-jointed robot arm to reach continuously changing target locations. The experimentation of the algorithm is carried out by training an agent to control the movement of this double-jointed robot arm. The architectures of the actor and cretic networks are meticulously designed and the DDPG hyperparameters are carefully tuned. An enhanced version of the DDPG is also presented to handle multiple robot arms simultaneously. The trained agents are successfully tested in the Unity Machine Learning Agents environment for controlling both a single robot arm as well as multiple simultaneous robot arms. The testing shows the robust performance of the DDPG algorithm for empowering robot arm manoeuvring in complex environments.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.