150
Views
16
CrossRef citations to date
0
Altmetric
Original Article

Inhibition of platelet aggregation by 1-methyl-4-phenyl pyridinium ion (MPP+) through ATP depletion: Evidence for the reduced platelet activities in Parkinson's disease

, , , , , , , , & show all
Pages 163-170 | Received 24 Oct 2008, Accepted 05 Jan 2009, Published online: 07 Jul 2009
 

Abstract

Neuronal accumulation of 1-methyl-4-phenylpyridinium ion (MPP+), the metabolite of neural toxin, 1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine (MPTP), induces a rapid depletion of cellular ATP level and loss of neuronal cell viability which simulates human Parkinson's disease (PD). Since ATP plays an important role in the physiology and function of platelets, which share many biochemical and physiological features with neuronal cells, we examined the effect of MPP+ on platelet aggregation and viability using freshly isolated rat platelets. While the treatment of MPP+ to platelets did not induce cytotoxicity, it significantly attenuated agonist-induced platelet aggregation in a concentration dependent manner. The inhibition of aggregation by MPP+ was mediated by the depletion of the cytoplasmic ATP pool and resultant decreased ATP secretion. Different from the previous reports in neuronal cells, MPP+ did not affect intracellular levels of glutathione and cytoplasmic Ca2+ in platelets. The combined treatment with MPP+ and 2-deoxyglucose, a glycolysis inhibitor, showed the additive effect in the decrease of ATP secretion and intracellular content. Consistent with these findings, inhibitory effects of MPP+ on platelet aggregation was significantly enhanced by the treatment with 2-deoxyglucose. In conclusion, these results suggested that MPP+ can induce ATP depletion in platelets and attenuate platelet aggregation providing a new theory on the reduced platelet activities in PD patients.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.