76
Views
21
CrossRef citations to date
0
Altmetric
Original

Inferring the capacity of the vector Poisson channel with a Bernoulli model

&
Pages 13-33 | Received 13 Oct 2006, Accepted 31 Aug 2007, Published online: 09 Jul 2009
 

Abstract

The capacity defines the ultimate fidelity limits of information transmission by any system. We derive the capacity of parallel Poisson process channels to judge the relative effectiveness of neural population structures. Because the Poisson process is equivalent to a Bernoulli process having small event probabilities, we infer the capacity of multi-channel Poisson models from their Bernoulli surrogates. For neural populations wherein each neuron has individual innervation, inter-neuron dependencies increase capacity, the opposite behavior of populations that share a single input. We use Shannon's rate-distortion theory to show that for Gaussian stimuli, the mean-squared error of the decoded stimulus decreases exponentially in both the population size and the maximal discharge rate. Detailed analysis shows that population coding is essential for accurate stimulus reconstruction. By modeling multi-neuron recordings as a sum of a neural population, we show that the resulting capacity is much less than the population's, reducing it to a level that can be less than provided with two separated neural responses. This result suggests that attempting neural control without spike sorting greatly reduces the achievable fidelity. In contrast, single-electrode neural stimulation does not incur any capacity deficit in comparison to stimulating individual neurons.

Notes

Notes

1. Although differing in detail, the capacity of additive Gaussian noise channels also increases with increasing correlation among the channels in the independent-input case.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.