57
Views
13
CrossRef citations to date
0
Altmetric
Research Article

High levels of chromosome aberrations correlate with impaired in vitro radiation-induced apoptosis and DNA repair in human B-chronic lymphocytic leukaemia cells

, , , , , & show all
Pages 671-679 | Published online: 03 Jul 2009
 

Abstract

Purpose : To investigate the relationship between the susceptibility of B-chronic lymphoid leukaemia (B-CLL) cells to DNA damage-induced apoptosis, the kinetics of DNA strand-break rejoining, and chromosome damage after exposure to ionizing irradiation. Materials and methods : Lymphocytes from B-CLL patients were γ-irradiated in vitro with 0.2-5 Gy and stimulated by Staphylococcus aureus cowan I (SAC I) for estimation of chromosomal damage. Induction of apoptosis after irradiation was studied in 50 patients by two methods: morphological characterization of apoptotic cells after fluorescent staining (Hoechst), and specific quantification of mono- and oligonucleosomes in cytoplasmic cell fractions (ELISA assay). Morphological chromosome damage was scored in the first cell generation after irradiation (13 patients). In parallel, the kinetics of DNA single-strand break rejoining were investigated by the alkaline comet assay (12 patients). Results : Ionizing irradiation did not induce apoptosis in lymphocytes from a subset of B-CLL patients. The results suggest that B-CLL cells resistant to radiation-induced apoptosis could repair DNA strand-breaks more rapidly and showed a higher level of chromosome aberrations than radiation-sensitive B-CLL cells. Conclusion : Each of three biological effects observed (apoptosis, kinetics of DNA single-strand-break repair, chromosomal damage) might be explained by different modifications occurring in irradiated B-CLL cells. Their convergence strongly suggests that resistance to apoptotic death initiation by DNA damage may be impeded by a rapid engaging of the DNA repair mechanisms. The higher level of chromosome aberrations observed in these cells suggests that the type of DNA repair system involved may generate inaccurate repair.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.