57
Views
19
CrossRef citations to date
0
Altmetric
Original Article

Modelled microgravity does not modify the yield of chromosome aberrations induced by high-energy protons in human lymphocytes

, , , , , , , , & show all
Pages 147-155 | Received 16 Jul 2004, Accepted 23 Nov 2004, Published online: 03 Jul 2009
 

Abstract

The aim was to evaluate the effect of modelled microgravity on radiation-induced chromosome aberrations (CAs). G0 peripheral blood lymphocytes were exposed to 60 MeV protons or 250 kVp X-rays in the dose range 0 – 6 Gy, and allowed to repair DNA damage for 24 h under either normal gravity or microgravity modelled by the NASA-designed rotating-wall bioreactor. Cells were then stimulated to proliferate by phytohaemagglutinin (PHA) under normal gravity conditions and prematurely condensed chromosomes were harvested after 48 h. CAs were scored in chromosomes 1 and 2 by fluorescence in-situ hybridization. Proliferation gravisensitivity was examined by cell growth curves and by morphological evaluation of mitogen-induced activation. Cell replication rounds were monitored by bromodeoxyuridine labelling. Modelled microgravity markedly reduced PHA-mediated lymphocyte blastogenesis and cell growth. However, no significant differences between normal gravity and modelled microgravity were found in the dose – response curves for the induction of aberrant cells or total interchromosomal exchange frequency. Rotating-wall bioreactor-based microgravity reproduced space-related alterations of mitogen stimulation in human lymphocytes but did not affect the yield of CAs induced by low- linear energy transfer radiation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.