194
Views
22
CrossRef citations to date
0
Altmetric
Original

Human fibroblast growth factor 20 (FGF-20; CG53135-05): A novel cytoprotectant with radioprotective potential

, , , , , , , , & show all
Pages 567-579 | Received 15 Dec 2004, Accepted 01 Jun 2005, Published online: 03 Jul 2009
 

Abstract

The aim was to evaluate the radioprotective properties of recombinant human fibroblast growth factor 20 (FGF-20; CG53135-05) in vitro and in vivo and to examine its effects on known cellular pathways of radioprotection. Relative transcript levels of the cyclooxygenase 2 (COX2), Mn-super oxide dismutase (SOD), CuZn-SOD, extracellular (EC)-SOD, nuclear respiratory factor 2 (Nrf2), glutathione peroxidase 1 (GPX1) and intestinal trefoil factor 3 (ITF3) genes, which are involved in radiation response pathways, were assessed by reverse transcriptase-polymerase chain reaction (RT-PCR) in NIH/3T3, IEC18, CCD-18Co, CCD-1070sk and human umbilical vein endothelial cells (HUVEC) cells exposed to FGF-20. Activation of the radioprotective signal transduction pathways initiating with the serine/threonine Akt kinase and the extracellular regulated kinase (ERK) were analysed. Levels of intracellular hydrogen peroxide and cytosolic redox potential were also measured in irradiated and unirradiated cells in the presence or absence of FGF-20. The effects of FGF-20 on cell survival in vitro following ionizing radiation were evaluated using clonogenic assays. To test the potential activity of FGF-20 as a radioprotectant in vivo, mice were administered a single dose of FGF-20 (4 mg kg−1, intraperitoneally (i.p.) 1 day before lethal total-body irradiation and evaluated for survival. In vitro exposure to FGF-20 increased expression of the Nrf2 transcription factor and oxygen radical scavenging enzymes such as MnSOD, activated signal transduction pathways (ERK and Akt) and resulted in increased survival of irradiated cells in vitro. FGF-20 treatment also resulted in a concomitant reduction in intracellular levels of injurious reactive oxygen species (ROS) following acute ionizing irradiation. Finally, prophylactic administration of FGF-20 to mice before potentially lethal, whole-body X-irradiation led to significant increases in overall survival. FGF-20 reduced the lethal effects of acute ionizing radiation exposure in cells by up-regulating important signalling and free radical scavenging pathways. Survival-sparing effects of FGF-20 prophylaxis in acutely irradiated mice presumably are elicited by comparable mechanisms. These results indicate that FGF-20, has significant radioprotective attributes with potential applications in clinical and non-clinical exposure settings.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.