3
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Neonatal Oocyte Development and Selective Oocyte-killing by X-rays in the Chinese Hamster, Cricetulus Griseus

&
Pages 139-149 | Received 19 May 1983, Accepted 23 Sep 1983, Published online: 03 Jul 2009
 

Summary

The process of ovarian development in neonatal Chinese hamsters aged between 0 and 16 days was studied histologically and quantitatively in both a non-irradiated group and an irradiated group. In the latter, ovaries were exposed to a single dose of 1 Gy X-rays on days 0, 2, 4, 6, 8, 10, 12 and 14 after birth. All oocytes on day 0 were at pachytene, and nearly all of them seemed to develop to dictyate by day 10. A quantitative analysis of age-dependent changes in the distribution of oocytes showed that a marked spontaneous degeneration of oocytes took place twice, i.e. during pachytene (day 0 to day 4) and dictyate (day 12 to day 14). Oocytes of this species were found to be very radioresistant at pachytene, but to become sharply sensitive during the phases between diplotene and early dicytate, suffering an almost complete oocyte-killing after 1 Gy. However, they recovered radioresistance after the onset of the resting stage. The changing aspects of radiosensitivity in the Chinese hamster were shown to be far more marked than in the mouse and the rat, which have been observed by previous investigators.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.