12
Views
45
CrossRef citations to date
0
Altmetric
Original Article

Progressive Development of Radiation Damage in Mouse Kidneys and the Consequences for Reirradiation Tolerance

, &
Pages 405-415 | Received 19 Jun 1987, Accepted 11 Sep 1987, Published online: 03 Jul 2009
 

Summary

The aim of this study was to investigate the influence of protracted overall treatment times on the development and repair of renal irradiation injury in mice.

Functional kidney damage was measured, from the proportion of 51CrEDTA remaining in the plasma at 30 min after injection of the tracer. Damage was assessed at monthly intervals for up to 14 months after two equal doses of X-rays given in 1 day, 1 month or 6 months. There was no difference between the time of onset or rate of development of damage after two fractions in 1 day or 1 month, but there was a time lag of 7–15 weeks (depending on dose) before the development of damage after 2F given in 6 months. After this time lag the rate of progression of damage was the same for 2F/6 months as for 2F in the shorter intervals. There was therefore no indication of any increase in total tolerated dose for the kidney when the treatment time was protracted, although the time scales for onset of this damage differed.

Tolerance of mouse kidneys to reirradiation at 6 months after single doses of 6–12 Gy was also assessed. All of the previously irradiated animals developed a more severe renal impairment after reirradiation than did the age-matched control mice. The most severe damage occurred in mice which received the highest initial radiation doses, but doses of only 6 Gy were sufficient to markedly reduce the tolerance to reirradiation.

It was concluded from these studies that no additional dose-sparing (tissue recovery) took place in the kidneys during a 6-month interval. This was true even when the initial radiation dose alone was insufficient to cause measurable renal dysfunction.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.