51
Views
10
CrossRef citations to date
0
Altmetric
Original Article

Trypsin-induced Changes in Cell Shape and Chromatin Structure Result in Radiosensitization of Monolayer Chinese Hamster V79 Cells

, &
Pages 635-646 | Received 05 Nov 1990, Accepted 04 Apr 1991, Published online: 03 Jul 2009
 

Summary

Trypsin is the enzyme commonly used to prepare single cell suspensions from monolayer and spheroid cultures, both to determine survival and to assay DNA damage. Trypsin induces rounding, dissociation and radiosensitization of anchorage-dependent cells. Radiosensitivity and chromatin structure were compared between trypsin-treated (0·05%) round V79 cells from monolayers and spheroids vs. untreated spread monolayer cells in situ. The fluorescent halo technique was used to measure the changes in DNA supercoiling in nucleoids isolated from control and irradiated round and spread cells. Maximal halo diameters, the amount of initial and residual radiation-induced DNA damage (estimated from nucleoid halo diameter changes), and the radiosensitivity were higher in round cells than in spread monolayer V79 cells. The effects on cellular radiosensitivity and maximal halo diameter of other agents which also round and dissociate cells, e.g. 0·25% trypsin, pronase E and a non-enzymatic cell-dissociation solution, were similar to those of 0·05% trypsin. In LY-S cells, which are anchorage-independent, DNA loop size, the initial amount of DNA damage and radiosensitivity were not affected by trypsin. We suggest that the higher radiosensitivity of anchorage-dependent cells under immediate trypsinization and plating conditions, compared to cells with postirradiation in situ repair incubation, is due to correlated changes in cell shape and chromatin structure.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.