11
Views
10
CrossRef citations to date
0
Altmetric
Original Article

Molecular Mechanism of Potentially Lethal Damage Repair. I. Enhanced Fidelity of DNA Double-strand Break Rejoining under Conditions Allowing Potentially Lethal Damage Repair

, , &
Pages 277-285 | Received 19 Jul 1994, Accepted 15 Nov 1994, Published online: 03 Jul 2009
 

Abstract

This study contributes to the elucidation of the molecular mechanism underlying potentially lethal damage (PLD) repair. Repair of DNA double-strand breaks (dsbs) is involved in PLD repair in yeast, i.e. in the enhanced survival of cells due to post-irradiation treatment under non-growth conditions before plating cells on nutrient agar (growth conditions). However, dsbs are rejoined when cells are kept either in non-growth or growth medium. One possibility to explain the enhanced survival of cells after post-irradiation treatment in non-growth medium might be an enhanced fidelity of dsb rejoining under non-growth relative to growth conditions. We have addressed this problem by using a plasmid-mediated assay. Into one of the two selectable plasmid markers a single dsb was introduced by a restriction enzyme. The cut plasmid was transfected into an appropriate yeast mutant. Transformants that had correctly rejoined the dsb were selected on the basis of restoration of the function of the cut gene. The yeast mutant was allowed to rejoin the cut plasmid under either non-growth or growth conditions. The results show that the fidelity of dsb rejoining is higher in cells kept under non-growth relative to growth conditions.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.