196
Views
5
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Effect of environmental factors and precursors on oxalic acid production, mycelial biomass and virulence of a potential bioherbicide isolate of Sclerotium rolfsii SC64 produced in liquid culture

, , , &
Pages 917-927 | Received 24 Dec 2010, Accepted 08 Jun 2011, Published online: 01 Aug 2011
 

Abstract

The fungus Sclerotium rolfsii is presently under development as a bioherbicide for broadleaf weed species using fungus-infested substrates as application material in this laboratory. The effect of environmental factors and three precursors (citric acid, ascorbic acid, and sodium succinate) on mycelial growth, oxalic acid production, and virulence by SC64 in liquid culture were investigated. The results showed that for mycelia growth the optimum liquid medium was Modified Richard's solution (MRS) among the five tested media, but potato dextrose broth (PDB) produced the maximum oxalic acid production and virulence on detached Solidago canadensis leaves. When PDB was used as the basic medium, the oxalic acid/mycelial dry weight (mg g–1) ratio reached the peak 4 days after inoculation. The optimum temperature for oxalic acid production was at 27°C, but increased mycelial dry weight and virulence were observed at 30°C. The optimum range of initial pH value for oxalic acid accumulation was 4.0–6.0, with the optimal pH 5.0; highest mycelial growth was with an initial pH 3.5–6.0 (optimum pH 5.0) and subsequently pH 3.5–5.5 (maximum at pH 3.5). Both mycelial dry weight and oxalic acid production showed a decreasing trend as a result of the precursor of oxalic acid being added to PDB. Among the three precursors, the greatest decrease in mycelial dry weight, and oxalic acid production was caused by sodium succinate. This clarification of optimal conditions for production of mycelial biomass while insuring high concentrations of oxalic acid and high virulence should be useful for further development of this fungus as biocontrol agent.

Acknowledgements

The authors thank Mr. Xia YM and Miss Li X for her technical assistance for part of this work, Dr. Chen GQ for advice on the statistical analysis, Miss Chen YF for her assistance with the graphics and revise. Financial support was provided by the 863 Hi-tech Research Project (2006)AA10A214), Science & Technology Pillar Program of Jiangsu Province (BE2008313), Ph.D. Programs Foundation of Ministry of Education of China (20090097110018) and the 111 project.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.