585
Views
36
CrossRef citations to date
0
Altmetric
Original Articles

Electrochemical oxidation of tannic acid contaminated wastewater by RuO2/IrO2/TaO2‐coated titanium and graphite anodes

, &
Pages 1613-1622 | Received 15 Oct 2009, Accepted 29 Mar 2010, Published online: 29 Nov 2010
 

Abstract

The electrochemical oxidation of tannic acid contaminated wastewater by RuO2/IrO2/TaO2‐coated titanium and graphite anodes has been investigated. The effect of the process variables, such as initial pH, current density, processing time, concentration of the electrolyte and anode materials, on the degradation of tannic acid was studied. During the various stages of electrolysis, parameters such as COD, chloride ion concentration and UV–Vis spectra were examined and discussed. The maximum chemical oxygen demand (COD) removal efficiency of 94% was achieved at pH 5, operated at the current density of 8.10 mA/cm2, electrolyte (NaCl) concentration of 0.1 M and at 60 min of electrolysis using graphite anodes. The experimental results showed that the electrochemical oxidation process could effectively reduce the COD from the tannic acid contaminated wastewater. An acidic pH showed the maximum reduction of COD compared with neutral and alkaline pH. Increase in current density, process time and electrolyte (NaCl) concentration with the increase in COD removal. Graphite anodes showed maximum removal of COD and better tannic acid degradation when compared with RuO2/IrO2/TaO2‐coated titanium anodes.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.