410
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Chlortetracycline degradation by photocatalytic ozonation in the aqueous phase: mineralization and the effects on biodegradability

, , &
Pages 495-502 | Received 15 Sep 2011, Accepted 03 Jun 2012, Published online: 11 Jul 2012
 

Abstract

Chlortetracycline (CTC) is a hazardous material in aquatic environments. This study was focused on optimization of photocatalytic ozonation processes for removal of CTC from wastewater at pH 2.2 and 7.0. In this study, the tested processes for CTC removal were arranged from the least efficient to the most efficient as: UV, UV/TiO2, O3, O3/UV and O3/UV/TiO2. Ozonation efficiency was due to ozone affinity for electron-rich sites on the CTC molecule. In the O3/UV and O3/UV/TiO2 processes, efficiency was increased by the photolysis of CTC and generation of OH. At pH 7.0, all the processes were more efficient for CTC degradation than at pH 2.2 due to CTC speciation, ozone decay to OH and the attractions between ionized CTC and TiO2 particles. UV/O3 at pH 7.0 showed an additive effect while other combination processes showed a synergistic effect that resulted in higher rates of reactions than the sums of individual reaction rates. The TOC removal ranged from 8% to 41% after one hour of reaction, with the above-mentioned order of efficiency. The biodegradability increased rapidly during the early minutes of the reaction. A reaction time of 10–15 min was sufficient for near maximum biodegradability, making these processes good pretreatments for the biological processes.

Acknowledgements

This work was supported by the 2011 Yeungnam University Research Grant. This research was financially supported by the Ministry of Knowledge Economy (MKE), Korea Institute for Advancement of Technology (KIAT) through the Inter-ER Cooperation Projects.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.