454
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

Comparing atrazine and cyanuric acid electro-oxidation on mixed oxide and boron-doped diamond electrodes

, , , &
Pages 1043-1051 | Received 24 Apr 2012, Accepted 05 Sep 2012, Published online: 19 Oct 2012
 

Abstract

The breakdown of pesticides has been promoted by many methods for clean up of contaminated soil and wastewaters. The main goal is to decrease the toxicity of the parent compound to achieve non-toxic compounds or even, when complete mineralization occurs, carbon dioxide and water. Therefore, electrochemical degradation (potentiostatic and galvanostatic) of both the pesticide atrazine and cyanuric acid (CA) at boron-doped diamond (BDD) and Ti/Ru0.3Ti0.7O2 dimensionally stable anode (DSA®) electrodes, in different supporting electrolytes (NaCl and Na2SO4), is presented with the aim of establishing the influence of the operational parameters on the process efficiency. The results demonstrate that both the electrode material and the supporting electrolyte have a strong influence on the rate of atrazine removal. In the chloride medium, the rate of atrazine removal is always greater than in sulfate under all conditions employed. Furthermore, in the sulfate medium, atrazine degradation was significant only at the BDD electrode. The total organic carbon (TOC) load decreased by 79% and 56% at the BDD and DSA® electrodes, respectively, in the chloride medium. This trend was maintained in the sulfate medium but the TOC removal was lower (i.e. 33% and 13% at BDD and DSA® electrodes, respectively). CA, a stable atrazine degradation intermediate, was also studied and it is efficiently removed using the BDD electrode in both media, mainly when high current densities are employed. The use of the BDD electrode in the chloride medium not only degrades atrazine but also mineralized cyanuric acid leading to the higher TOC removal.

Acknowledgements

The authors wish to thank to CNPq (grants: 304018/2009-0 and 308537/2009-2) and FAPESP (grants: 04/09588-1 and 06/50692-2), Brazil, for the financial support.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.