1,821
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Assessment of didecyldimethylammonium chloride as a ballast water treatment method

, &
Pages 435-449 | Received 07 Mar 2014, Accepted 30 Jul 2014, Published online: 03 Sep 2014
 

Abstract

Ballast water-mediated transfer of aquatic invasive species is considered a major threat to marine biodiversity, marine industry and human health. A ballast water treatment is needed to comply with International Maritime Organization (IMO) ballast water discharge regulations. Didecyldimethylammonium chloride (DDAC) was tested for its applicability as a ballast water treatment method. The treatment of the marine phytoplankton species Tetraselmis suecica, Isochrysis galbana and Chaetoceros calcitrans showed that at 2.5 µL L−1 DDAC was able to inactivate photosystem II (PSII) efficiency and disintegrate the cells after 5 days of dark incubation. The treatment of natural marine plankton communities with 2.5 µL L−1 DDAC did not sufficiently decrease zooplankton abundance to comply with the IMO D-2 standard. Bivalve larvae showed the highest resistance to DDAC. PSII efficiency was inactivated within 5 days but phytoplankton cells remained intact. Regrowth occurred within 2 days of incubation in the light. However, untreated phytoplankton exposed to residual DDAC showed delayed cell growth and reduced PSII efficiency, indicating residual DDAC toxicity. Natural marine plankton communities treated with 5 µL L−1 DDAC showed sufficient disinfection of zooplankton and inactivation of PSII efficiency. Phytoplankton regrowth was not detected after 9 days of light incubation. Bacteria were initially reduced due to the DDAC treatment but regrowth was observed within 5 days of dark incubation. Residual DDAC remained too high after 5 days to be safely discharged. Two neutralization cycles of 50 mg L−1 bentonite were needed to inactivate residual DDAC upon discharge. The inactivation of residual DDAC may seriously hamper the practical use of DDAC as a ballast water disinfectant.

Acknowledgements

The authors thank all personnel of the plankton laboratory at NIOZ. In particular, the authors thank Frank Fuhr and Isabel van der Star for carrying out all zooplankton sampling and analysis and for supplying valuable information regarding zooplankton resistance to disinfection. This work has been co-funded by the North Sea Region Program under the ERDF of the European Union.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.