372
Views
11
CrossRef citations to date
0
Altmetric
Articles

A novel bioaugmentation treatment approach using a confined microbial environment: a case study in a Membrane Bioreactor wastewater treatment plant

&
Pages 1582-1590 | Received 28 May 2015, Accepted 10 Nov 2015, Published online: 08 Jan 2016
 

ABSTRACT

A novel bioaugmentation treatment approach, the Small-Bioreactor Platform (SBP) technology, was developed to increase the biological stabilization process in the treatment of wastewater in order to improve wastewater processing effectiveness. The SBP microfiltration membrane provides protection against the natural selection forces that target exogenous bacterial cultures within wastewater. As a result, the exogenous microorganisms culture adapt and proliferate, thus providing a successful bioaugmentation process in wastewater treatment. The new bioaugmentation treatment approach was studied in a full configuration Membrane Bioreactor (MBR) plant treating domestic wastewater. Our results present the potential of this innovative technology to eliminate, or reduce, the intensity of stress events, as well as shortening the recovery time after stress events, consequently elevating the treatment effectiveness. The effective dose of SBP capsules per cubic metre per day of wastewater was achieved during the addition of 3000 SBP capsules (1.25 SBP capsules per cubic metre per day), which provided approximately 4.5 L of high concentration exogenous biomass culture within the SBP capsules internal medium. This study demonstrates an innovative treatment capability which provides an effective bioaugmentation treatment in an MBR domestic wastewater treatment plant.

Acknowledgments

We would like to thank Palgey-Maim Ltd. (Israel), which helped in carrying out this study.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.