208
Views
5
CrossRef citations to date
0
Altmetric
Articles

Copper wastewater treatment with high concentration in a two-stage crystallization-based combined process

, , &
Pages 2346-2352 | Received 17 Oct 2016, Accepted 07 Jul 2017, Published online: 03 Aug 2017
 

ABSTRACT

Crystallization process in a fluidized bed reactor (FBR) to treat metal wastewaters has been considered as a suitable alternative to the chemical precipitation. However, the process efficiency was high under low initial concentrations, but decreased with the increase of metal concentration due to the unwanted homogeneous precipitation. Aiming at the treatment of heavy metal wastewater with high concentration, a modified FBR (mFBR) was investigated and the two-stage crystallization-based combined process was proposed. mFBR was more suitable for copper removal with high concentration than FBR. The copper concentration was reduced to 9.92 mg/L after the two-stage crystallization, corresponding to the removal rate of 96.6%. After filtration and ion exchange, the copper concentration was further reduced to 0.739 and 0.175 mg/L. During crystallization precipitation, the median size of the silica sand was gradually increased from 0.182 to 0.260 mm. The glossy surface of silica was gradually densely covered with short crystal precipitate, and obvious angularity gradually disappeared due to the deposition of copper precipitate. In addition, the water content of the crystallization precipitate was about 13.7% and much lower than the traditional chemical sludge. Copper precipitate was mainly composed of CuCO3 and Cu(OH)2.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The authors would like to acknowledge the financial support of the China Postdoctoral Science Foundation Funded Project [grant number 2015M571426] and Natural Science Foundation of China [grant number 51308066].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.