330
Views
10
CrossRef citations to date
0
Altmetric
Articles

Modeling the bioconversion of starch to P(HB-co-HV) optimized by experimental design using Bacillus megaterium BBST4 strain

, , , &
Pages 1185-1202 | Received 14 Aug 2017, Accepted 13 Dec 2017, Published online: 02 Jan 2018
 

ABSTRACT

Poly(hydroxybutyrate-co-hydroxyvalerate) (P(HB-co-HV)) is a prominent biopolymer as a potential candidate for use in the biomedical area. Several Bacillus spp. strains show promising characteristics in the use of several carbon sources and are an interesting alternative for the production of P(HB-co-HV). Sewage from the agricultural and food processing industries can be used to obtain abundantly starch as a carbon source for PHA production. The aim of the present study was to optimize by response surface methodology and desirability, the production of PHA by a Bacillus megaterium strain using starch as the sole carbon source. Two optimal conditions were determined without sporulation and were used to perform new experiments to calibrate and validate a mechanistic model, developed to simulate the dynamics of PHA and biomass production. The developed model successfully represents the kinetics of the microorganism. Employing different characterization techniques, it was determined that the PHA produced by the strain is a copolymer composed of different HB:HV proportions. Using starch as the sole carbon source in a minimal salt medium, this work shows the first reports in the literature of: 1) a mathematical model for predicting growth kinetic and PHA production for B. megaterium strain and 2) a Bacillus spp. producing P(HB-co-HV) copolymer.

Disclosure Statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

Authors wish to thank CONICET (National Scientific and Technical Research Council) and UNS (Universidad Nacional del Sur) for financial support.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.