365
Views
16
CrossRef citations to date
0
Altmetric
Articles

Iron oxide nanoparticles as heterogeneous electro-Fenton catalysts for the removal of AR18 azo dye

, ORCID Icon, &
Pages 2146-2153 | Received 23 Jul 2018, Accepted 30 Nov 2018, Published online: 15 Dec 2018
 

ABSTRACT

Heterogeneous electro-Fenton mineralization of Acid Red 18 (AR18) in aqueous solution was studied with magnetite Fe3O4 (MNPs) and haematite Fe2O3 (HNPs) nanoparticles as catalysts. High mineralization yields of AR18 were obtained with magnetite, 81% TOC removal after 180 min of electrolysis in 40 mg L−1 Fe3O4, pH 3.0, at 50 mA of current intensity and in 50 mM Na2SO4. In order to explain the obtained mineralization yield achieved with MNPs, the quantification of hydrogen peroxide (H2O2), hydroxyl radical (•OH) and iron leaching were performed at 50 and 100 mA. From the high iron concentration found in the bulk solution and the slight impact of the catalyst mass concentration on TOC removal, the formation of hydroxyl radicals occurs mainly through homogeneous process. In the presence of hydroxyl radical scavenger, degradation remained total after 15 min showing the involvement of a direct electrochemical oxidation of the dye at the electrode surface. The hydroxyl radical oxidation is responsible for at least 50% of mineralization.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.