332
Views
5
CrossRef citations to date
0
Altmetric
Articles

Removal of aniline from water by an Fe(II)-nano-Fe3O4@PAC heterogeneous catalyst in a Fenton-like process

, , &
Pages 545-557 | Received 06 Jan 2019, Accepted 23 Jun 2019, Published online: 09 Jul 2019
 

ABSTRACT

Aniline is a toxic chemical, and in many industries it is degraded by Fenton processes. In this study, an Fe(II)-nano-Fe3O4@PAC heterogeneous Fenton catalyst (MFC) was prepared with a coprecipitation and impregnation method, which is simple, efficient and cost effective. The results of the magnetic performance tests showed that the MFC has typical ferromagnetism properties. Nano-Fe3O4 was found both on the surface and inside the pores of the powdered activated carbon (PAC). MFC was found to be an efficient catalyst in the Fenton-like process for aniline degradation. The optimal conditions were obtained by the orthogonal experimental method. The results showed that under the optimal conditions (pH = 3.00, temperature = 20°C, concentration of MFC = 1.0 g/L, concentration of H2O2 = 0.27 g/L), the 5 mg/L aniline solution degradation ratio reached 91.2% and the mineralization ratio reached 75.77% in 30 min. In addition, kinetics studies indicated that the aniline degradation process follows a pseudo-first-order kinetics model. No refractory intermediate such as azobenzene, was found during the reaction. The pH value is an important factor in aniline solution degradation. This result indicates that in addition to the surface catalytic reaction, the Fenton reaction also occurs in solution. Fe2+/Fe3+ on the MFC surface and Fe2+/Fe3+ in solution both affect aniline degradation. This catalyst has the advantage of being easily magnetically separated from the aqueous phase. It has useful application prospects in solving organic industrial wastewater pollutions in developing countries because of its cost-effectiveness.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by The National Natural Science Foundation of China [grant number 51708250] and The Project of the Department of Science & Technology of Jilin Province (20180623042TC).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.