436
Views
18
CrossRef citations to date
0
Altmetric
Articles

Experimental and statistical analysis of As(III) adsorption from contaminated water using activated red mud doped calcium-alginate beads

, , , ORCID Icon & ORCID Icon
Pages 1810-1825 | Received 11 Feb 2019, Accepted 26 Sep 2019, Published online: 03 Nov 2019
 

ABSTRACT

Arsenic present in water bodies causes devastating effects on aquatic organisms and indirectly poses a hazardous threat to human existence. There is an urgent need to develop potential and convincing technologies to troubleshoot this problem. In the present study, an adsorbent has been prepared using the waste red mud from hazardous aluminium industry and doping it with calcium-alginate beads (ARMCB) for the effective removal of As(III) from wastewater. The concentration of As(III) was reduced from 0.101 mg/L to 0.008 mg/L after adsorption which effectively met the economic and environmental conditions imposed by WHO (>0.01 mg/L). Further, the statistical Response Surface Methodology (RSM) is adopted to analyze the combined effects of four operational parameters namely: pH, sorbent dosage, contact time and initial concentration on the adsorption of As(III) from the synthetic contaminated water samples. A high correlation coefficient (R2) value of 0.9672 projected by ANOVA confirmed the satisfactory regression of the developed model. The maximum adsorption capacity is found to be 1.807 mg/g at optimum operating conditions. The surface characterization of the adsorbent before and after adsorption by SEM, EDX, XRD, and FTIR confirms the potentiality of the adsorbent towards As(III) ions. Thermodynamic, adsorption isotherms and kinetic analysis respectively projected the endothermic Langmuir model adsorption of As(III) and the pseudo-second-order rate kinetics of the sorption mechanism. The current study aids the implementation of the developed robust technique for the successful removal of As(III) from industrial and domestic polluted water samples.

GRAPHICAL ABSTRACT

Acknowledgement

The authors thank the Ministry of Environment & Forests (MOEF), New Delhi, for granting the project entitled ‘Red mud as an adsorbent for the removal of pollutants’ (19/16/2014-RE)

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by Ministry of Environment and Forests: [Grant Number 19/16.2014-RE].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.