182
Views
4
CrossRef citations to date
0
Altmetric
Articles

Efficient graphene-coated iron oxide (GCIO) nanoadsorbent for removal of lead and arsenic ions

, &
Pages 2187-2201 | Received 26 Dec 2018, Accepted 14 Nov 2019, Published online: 11 Dec 2019
 

ABSTRACT

The graphene-coated iron oxide (GCIO) was used for the removal of Pb2+ and As3+ ions from aqueous solution. For the characterization of GCIO, several techniques (FTIR, XRD, EDX, SEM, TEM, TGA, DSC and vibrating sample magnetometry) were used which indicated the interaction of Pb2+ and As3+ with adsorbent. In addition, the effects of adsorbate concentration, different composition of adsorbent, temperature, pH of the solution and contact time of adsorbate–adsorbent were studied. After analysis of these experiments, it was found that GCIO offered very fast removal of Pb2+ and As3+ with small amount of GCIO (0.09 g) in 100 mg/L adsorbate solution. The maximum removal of Pb2+ ions (up to 97.62%) was achieved when 100 mg/L standard solution of metal ion was treated with GCIO for 35 min at 45°C in weak acidic medium (5 pH). The adsorption of Pb2+ ions followed Freundlich model with high correlation coefficient 0.98 R2. In case of As3+ ions, maximum removal of metal ion (up to 86.62%) was attained when 100 mg/L adsorbate solution is treated with GCIO for 25 min in slightly acidic medium (6 pH) at 25°C. The adsorption of As3+ ions followed D–R model with 0.98 R2 value. The adsorption of both metal ions (Pb2+ and As3+) follows second-order kinetic model. The high percentage removal of metal ions with little quantity of GCIO confirmed that GCIO is an excellent, effective and economic adsorbent.

GRAPHICAL ABSTRACT

Acknowledgements

The authors wish to acknowledge the Indian Institute of Technology, Mumbai (MH), India, for rendering facilities for the characterization of as-prepared materials.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.