232
Views
13
CrossRef citations to date
0
Altmetric
Articles

A reusable visible driven N and C–N doped TiO2 magnetic nanocomposites for photodegradation of direct red 16 azo dye in water and wastewater

, &
Pages 1269-1284 | Received 23 Nov 2019, Accepted 01 Sep 2020, Published online: 02 Oct 2020
 

ABSTRACT

The visible active N-doped TiO2/ZnFe2O4 (urea–TiO2/ZnFe2O4) and CN-codoped TiO2/ZnFe2O4 (L-asparagine–TiO2/ZnFe2O4) nanocomposites were successfully synthesized by the sol–gel–hydrothermal method for direct red 16 (DR16) photodegradation. Their properties of the prepared nanocomposites were analysed using XRD, FT-IR, FE-SEM, EDX, DRS and PL tests. The DRS and PL results confirmed a narrow band-gap energy and low recombination rate of photo-produced electron and hole pairs, respectively. The effect of adding various dopant agents (urea and L-asparagine) with different loadings and magnetic nanoparticle (ZnFe2O4) into TiO2 sol on the photodegradation of DR16 was also evaluated. As a result, the L-asparagine (2 wt. %)–TiO2/ZnFe2O4 is the best photocatalyst compared to the other modified TiO2 nanocomposites due to its narrow band gap and high quantum efficiency. The catalyst concentration (1–2 g/L), DR16 concentration (25–45 ppm), initial pH (4–10), and irradiation time (30–90 min) as numerical variables were also considered for photocatalytic process analysis and moulding by central composite design (CCD). The increase in the pH and dye concentration reduces the photodegradation efficiency while irradiation time and catalyst concentration effectively improved its photodegradation efficiency. The DR16 was completely removed at 25 ppm of DR16, initial pH of 4 and 1.5 g/L of photocatalyst after 90-min irradiation. The photoactivity test was also repeated four times by reused L-asparagine–TiO2/ZnFe2O4 photocatalyst at optimum conditions. The decrease of dye degradation and loss of photocatalyst were not significant which was approved by the good performance and high recovery capability of the prepared nanocomposite.

GRAPHICAL ABSTRACT

Acknowledgments

The authors would like to acknowledge the Iran National Science Foundation (INSF) for the full financial support provided and the Environmental Research Institute the University of Isfahan Initiative for the scientific assistance in the respect. This work is supported by the Iran Nanotechnology Initiative Council.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The authors would like to acknowledge the Iran National Science Foundation (INSF) for the full financial support provided. This work is supported by the Iran Nanotechnology Initiative Council.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.