208
Views
1
CrossRef citations to date
0
Altmetric
Articles

Experimental study on the permeability of Pb-contaminated silt solidified by CFG

, ORCID Icon, , , &
Pages 1294-1306 | Received 25 Jul 2020, Accepted 11 Sep 2020, Published online: 02 Oct 2020
 

ABSTRACT

The permeability of soil is a fundamental parameter in hydrological and geotechnical studies, nevertheless, the investigations on the silt especially the heavy mental contaminated silt have rarely been reported. The research introduces the effect of the different factors, including the osmotic pressure, curing time, the content of binders and the concentration of lead, on the permeability and microscopic properties of lead-contaminated silt, which is solidified by a novel curing agent, formed by mixing cement, fly ash and desulphurization gypsum (CFG). According to the tests of the permeability and scanning electron microscope (SEM), the permeability of samples is investigated under different influencing factors. The results demonstrate that the permeability coefficient of the contaminated silt increases with the increasing osmotic pressure and lead ion concentration, while decreases with the increasing CFG content and the curing time, additonally, there are interactions among various factors, which jointly affect the permeability of samples. Moreover, the statistical analysis shows that osmotic pressure has the most significant effect on permeability among various factors. Besides, the influence of lead ion concentration, osmotic pressure and CFG content on the permeability coefficient at the curing time of 14d is more significant than that of 28d, and the influence order of factors was slightly different at different curing time. Furthermore, the SEM test proves the conclusion of the statistical analysis, which also explains the common reasons for the enhancement of the impermeability and unconfined compressive strength (UCS) of the lead-contaminated silt with the increasing curing time.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research was funded by Research Foundation of the Institute of Environment-friendly Materials and Occupational Health of Anhui University of Science and Technology, Wuhu [ALW2020YF02] and Innovation fund for Postgraduates of Anhui University of Science and Technology [2019CX2020].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.