484
Views
11
CrossRef citations to date
0
Altmetric
Articles

Effect of light intensity and wavelength on nitrogen and phosphate removal from municipal wastewater by microalgae under semi-batch cultivation

, , , , , & ORCID Icon show all
Pages 1352-1358 | Received 11 Mar 2020, Accepted 18 Sep 2020, Published online: 13 Oct 2020
 

ABSTRACT

Domestic, agricultural and industrial water activities lead to organic and inorganic pollution of the environment. Biotreatment of municipal wastewater with the potential production of biomass is a valuable feature of microalgae. In this study we evaluated the effects of wavelength and light intensity on phosphate and ammonium removal on the one hand, and biomass and protein production on the other hand by Spirulina platensis in municipal wastewater treatment under semi batch cultivation. S. platensis was inoculated at 40% in artificial wastewater open pond system. Red, blue and purple light with 3800, 4800 and 5800 lux light intensity under 12 h light and 12 h darkness were investigated. Cultivation was conducted in semi-batch conditions; after four days cultivation, one third of the culture was replaced with fresh medium. The highest biomass and protein concentrations were observed under blue light at 5800 lux light intensity, 5.45 and 3 g/l respectively cumulatively; while the highest amount of phosphate and ammonium removal were about 145 and 218 mg/l under purple light at 5800 lux intensity, respectively. The amounts of biomass and protein produced, as well as phosphate and ammonium removed, are therefore impacted by wavelength, light intensity, results show that light intensity and wavelength can be customized to reach on the one hand the highest biomass and protein production, and on the other hand to maximize the removal of phosphorous and ammonium.

GRAPHICAL ABSTRACT

Disclosure statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors declare that they have no conflict of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.