280
Views
1
CrossRef citations to date
0
Altmetric
Articles

Synthesis of N-doped carbon dots for highly selective and sensitive detection of metronidazole in real samples and its cytotoxicity studies

, , , &
Pages 4213-4226 | Received 08 Mar 2021, Accepted 13 Jun 2021, Published online: 09 Sep 2021
 

ABSTRACT

The current investigation reports the synthesis of N-CDs using glucosamine, ascorbic acid, and ethylenediamine precursors by a simple hydrothermal technique. The formation of N-CDs was proved by various characterisation techniques such as X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and Fourier-Transform Infrared Spectrophotometer (FT-IR). The optical properties were investigated by fluorescence and UV-vis spectrophotometer. Also, N-CDs showed high selectivity in detecting the MTZ compared to several other analytes. However, the metronidazole serves as an antibiotic against several microbial diseases but also a genotoxic, carcinogenic to the human when used in excessive dosage. The synthesised N-CDs showed high selectivity in detecting the MTZ compared to several other analytes. Besides, the cytotoxicity of the N-CDs was studied to evaluate its toxicity against the HeLa cancer cells. It showed 65.6% cell viability and 34.3% toxicity against the cancerous cells, and similarly 71% of cells viability against H9C2 cells. Thus, the current investigation explores the promising selective sensing of N-CDs against MTZ, along with that, it proved its cytotoxicity against HeLa cancerous cells and non-toxicity against H9C2 cells. The synthesised CDs can be better MTZ sensors and anti-cancer agents on further development at the industrial scale.

GRAPHICAL ABSTRACT

Data availability statement

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary material.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by Key Research and Development Program of Jiangsu Province [grant number: BE2019624]; Major Science and Technology Program for Water Pollution Control and Treatment [grant number: 2018ZX07208010-01].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.