154
Views
0
CrossRef citations to date
0
Altmetric
Articles

Response surface methodology to investigate the comparison of two carbon-based air cathodes for bio-electrochemical systems

, , , , &
Pages 4376-4390 | Received 02 Nov 2020, Accepted 21 Jun 2021, Published online: 13 Jul 2021
 

ABSTRACT

Bio-electrochemical technologies can generate renewable electrical bioenergy from the oxidation of organic materials through the catalytic reactions of the microorganisms while treating the wastewater. In this study, the use of carbon aerogel as a novel catalyst with high porosity (the total pore volume of 1.84 cm3 g−1) and high surface area (491.7 m2/g) for improving the oxygen reduction reaction (ORR) performance was compared to that of the conventional activated carbon, employed as an air cathode catalyst in bio-electrochemical systems, with the indigenous bacterial consortium. The electrochemical studies revealed the higher power efficiency in the use of carbon aerogel (with the maximum power density and current density of a 675 mWm−2 and 33.1 mAm−2, respectively), compared to the activated carbon (with the maximum power density and current density of 668.98 mWm−2 and 23.2 mAm−2, respectively). The performance of the two materials and optimum conditions for electricity production were examined using the Response Surface Method (RSM) as an optimal design method. Statistical analysis confirmed that the carbon aerogel performed better than the activated carbon in power production and facilitated cathodic redox reactions. Comparison of two catalysts showed that the redox reactions occurred in the presence of carbon aerogel more facilitated and in a wider range, produced 1.2 times more current (the maximum 2.1 and 1.69 mA current). Carbon aerogel, with a suitable load absorbance and resistance to oxidation at urban wastewater pH, can be, therefore, coated on electrodes to facilitate the oxidation–reduction reactions and electricity transmission.

GRAPHICAL ABSTRACT

Acknowledgement

We are grateful to the Tehran Sewage Company and Materials and Energy Research Center (Karaj, Iran), Dr. Salahi and Dr. Pazooki for making this study possible.

Disclosure statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Data availability statement

The data that support the findings of this study are available from the corresponding author, [T. TaheriDezfouli], upon reasonable request.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.