751
Views
3
CrossRef citations to date
0
Altmetric
Articles

Removal characteristics of heavy metal ions in rainwater runoff by bioretention cell modified with biochar

, , , , , & show all
Pages 4515-4527 | Received 19 Jan 2021, Accepted 25 Jun 2021, Published online: 22 Jul 2021
 

ABSTRACT

As a form of pollution source control and a low-impact development measure, bioretention is a convenient, economical, and effective method for the removal of heavy metals from stormwater runoff, which can adapt to the randomness and uncontrollability of non-point source pollution. However, few studies have assessed the performance of bioretention in the simultaneous removal of multiple heavy metals and the impact of heavy metal migration on the bioretention life cycle. In this study, the removal rates of various heavy metals: copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd), were enhanced using a biochar modified bioretention cell, as compared to the traditional sandy soil bioretention process. Following treatment with the biochar modified bioretention cell, the average concentrations of Cu, Zn, Pb, and Cd were 55%, 61%, 19.66%, and 36.43% lower than the traditional sandy soil bioretention effluent, respectively. These results show that biochar significantly improves the removal of heavy metals by the bioretention process, especially Cu and Zn. This study also evaluated the effect of biochar on the inhibition of heavy metal migration in the filler material, by sampling and analysing the filler and retained water at different filler depths, then repeating the filler leaching experiment after simulated rainfall. The content of heavy metals at a filler depth of 45 cm in the traditional sandy soil bioretention system, was significantly higher than in the biochar modified bioretention system, showing that biochar plays an important role in the inhibition of heavy metal migration.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The data in the study are all available.

Additional information

Funding

This work was supported by National Natural Science Foundation of China [grant number no. 52070152]; Key Research and Development Program of Shaanxi Province [grant number no. 2021NY-168].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.