1,843
Views
14
CrossRef citations to date
0
Altmetric
Articles

Biodegradation of low density polyethylene (LDPE) by mesophilic fungus ‘Penicillium citrinum’ isolated from soils of plastic waste dump yard, Bhopal, India

, &
Pages 2300-2314 | Received 17 May 2021, Accepted 22 Dec 2021, Published online: 07 Feb 2022
 

ABSTRACT

Low density Polyethylene (LDPE) in various forms has become a part of life. Its accretion due to non degradable nature is concern, endangering life on earth. Amongst various methods of LDPE disposal bioremediation is regarded as ecofriendly & widely accepted. Current investigation was an attempt to isolate potent PE degrading fungus from municipal landfill soils of Bhopal, India loaded with plastic waste.16 fungal isolates were recorded from the site; PE deteriorating fungus was screened using mineral salt agar medium amended with 3% LDPE powder as sole carbon source. The isolate Penicillium citrinum showed fast fungal colony growth in screening medium was selected for biodegradation study. P.citrinum showed 38.82 ± 1.08% weight loss of untreated LDPE pieces; to improve the degradation capacity nitric acid pretreatment was performed; biodegradation was significantly stimulated by 47.22 ± 2.04% after it’s pretreatment. Laccase, lipase, esterase & manganese peroxidase activities were assayed by spectrophotometer. LDPE biodegradation was analyzed by weight loss %, change in pH during fungal growth, field emission scanning electron microscopy (FE-SEM), fourier transform infrared spectroscopy (FTIR) & thermogravimetric analysis (TGA). FTIR spectra showed appearance of new functional groups assigned to hydrocarbon biodegradation, confirming enzymatic role in process. Changes in FTIR spectra of LDPE samples (untreated & pretreated) before & after biodegradation & surface changes in the biodegraded LDPE (indicated from FE-SEM) confirmed depolymerization of LDPE. Further changes in thermal decomposition rates of biodegraded samples in comparison to control, validate biodegradation. This is the first report signifying high competence of P.citrinum in LDPE degradation without prior pretreatment.

GRAPHICAL ABSTRACT

Acknowledgements

The authors convey their thanks to IISER-Bhopal Central Instrumentation facility (CIF) for providing support in carrying out FESEM & TGA. We are grateful to IIT- Bombay Sophisticated Analytical Instrument Facility (SAIF) for rendering help in FTIR analysis of the samples. We are also thankful to National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, Agharkar Research Institute, Pune for helping us in the identification of fungal isolate.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author, S.A. Ali, upon reasonable request.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.